
BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 1

UNIT-I
C++ language is a direct descendant of C programming language with additional features

such as type checking, object oriented programming, exception handling etc. You can call

it a “better C”. It was developed by Bjarne Stroustrup.

C++ is a general purpose language, when I say general purpose it simply means that it is

designed to be used for developing applications in a wide variety of domains.

Benefits of C++ over C Language

The major difference being OOPS concept, C++ is an object oriented language whereas C

language is a procedural language. Apart form this there are many other features of C++ which

gives this language an upper hand on C laguage.

Following features of C++ makes it a stronger language than C,

1. There is Stronger Type Checking in C++.

2. All the OOPS features in C++ like Abstraction, Encapsulation, Inheritance etc makes it

more worthy and useful for programmers.

3. C++ supports and allows user defined operators (i.e Operator Overloading) and

function overloading is also supported in it.

4. Exception Handling is there in C++.

5. The Concept of Virtual functions and also Constructors and Destructors for Objects.

6. Inline Functions in C++ instead of Macros in C language. Inline functions make

complete function body act like Macro, safely.

7. Variables can be declared anywhere in the program in C++, but must be declared before

they are used.

OOPs Concepts in C++

Object oriented programming is a way of solving complex problems by breaking them
into smaller problems using objects. Before Object Oriented Programming (commonly
referred as OOP), programs were written in procedural language, they were nothing but a
long list of instructions. On the other hand, the OOP is all about creating objects that
can interact with each other, this makes it easier to develop programs in OOP as we can
understand the relationship between them.

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 2

Object Oriented Programming(OOP)

In Object oriented programming we write programs using classes and objects utilising
features of OOPs such as abstraction, encapsulation, inheritance and polymorphism

Class and Objects

A class is like a blueprint of data member and functions and object is an instance of class.
For example, lets say we have a class Car which has data members (variables) such as
speed, weight, price and functions such as gearChange(), slowDown(), brake() etc. Now
lets say I create a object of this class named FordFigo which uses these data members
and functions and give them its own values. Similarly we can create as many objects as we
want using the blueprint(class).

Abstraction

Abstraction is a process of hiding irrelevant details from user. For example, When you
send an sms you just type the message, select the contact and click send, the phone
shows you that the message has been sent, what actually happens in background when
you click send is hidden from you as it is not relevant to you.

Encapsulation

Encapsulation is a process of combining data and function into a single unit like
capsule. This is to avoid the access of private data members from outside the class. To
achieve encapsulation, we make all data members of class private and create public
functions, using them we can get the values from these data members or set the value to
these data members.

Inheritance

Inheritance is a feature using which an object of child class acquires the properties of
parent class.

Polymorphism

Function overloading and Operator overloading are examples of polymorphism.
Polymorphism is a feature using which an object behaves differently in different
situation.
In function overloading we can have more than one function with same name but
different numbers, type or sequence of arguments.

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 3

C++ Basic Input/Output

C++ Output

In C++, cout sends formatted output to standard output devices, such as the screen.

We use the cout object along with the << operator for displaying output.

#include <iostream>

using namespace std;

int main() {

 // prints the string enclosed in double quotes

 cout << "This is C++ Programming";

 return 0;
}

How does this program work?

 We first include the iostream header file that allows us to display output.

 The cout object is defined inside the std namespace. To use the std namespace, we

used the using namespace std; statement.

 Every C++ program starts with the main() function. The code execution begins

from the start of the main() function.

 cout is an object that prints the string inside quotation marks " ". It is followed by

the << operator.

 return 0; is the "exit status" of the main() function. The program ends with this

statement, however, this statement is not mandatory.

Note: If we don't include the using namespace std; statement, we need to use std::cout

instead of cout.

#include <iostream>

int main() {

 // prints the string enclosed in double quotes

 std::cout << "This is C++ Programming";

 return 0;

}

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 4

Example 2: Numbers and Characters Output

To print the numbers and character variables, we use the same cout object but without

using quotation marks.

#include <iostream>

using namespace std;

int main() {

 int num1 = 70;

 double num2 = 256.783;

 char ch = 'A';

 cout << num1 << endl; // print integer

 cout << num2 << endl; // print double

 cout << "character: " << ch << endl; // print char

 return 0;

}

Output

70

256.783

character: A

Notes:

 The endl manipulator is used to insert a new line. That's why each output is

displayed in a new line.

 The << operator can be used more than once if we want to print different

variables, strings and so on in a single statement. For example:

cout << "character: " << ch << endl;

C++ Input

In C++, cin takes formatted input from standard input devices such as the keyboard.

We use the cin object along with the >> operator for taking input.

Example 3: Integer Input/Output

#include <iostream>

using namespace std;

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 5

int main() {

 int num;

 cout << "Enter an integer: ";

 cin >> num; // Taking input

 cout << "The number is: " << num;

 return 0;

}

Output

Enter an integer: 70

The number is: 70

In the program, we used

cin >> num;

to take input from the user. The input is stored in the variable num. We use the >>

operator with cin to take input.
Note: If we don't include the using namespace std; statement, we need to use std::cin

instead of cin.

C++ Taking Multiple Inputs

#include <iostream>

using namespace std;

int main() {

 char a;

 int num;

 cout << "Enter a character and an integer: ";

 cin >> a >> num;

 cout << "Character: " << a << endl;

 cout << "Number: " << num;

 return 0;

}

Output

Enter a character and an integer: F

23

Character: F

Number: 23

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 6

The Parts of a C++ Program

The structure of C++ program is divided into four different sections:

(1) Header File Section

(2) Class Declaration section

(3) Member Function definition section

(4) Main function section

(1) Header File Section:

This section contains various header files.

You can include various header files in to your program using this section.

For example:

include <iostream.h >

Header file contains declaration and definition of various built in functions as well as object. In

order to use this built in functions or object we need to include particular header file in our

program.

(2) Class Declaration Section:

This section contains declaration of class.

You can declare class and then declare data members and member functions inside that class.

For example:

class Demo

{

int a, b;

public:

void input();

void output();

}

You can also inherit one class from another existing class in this section.

(3) Member Function Definition Section:

This section is optional in the structure of C++ program.

Because you can define member functions inside the class or outside the class. If all the member

functions are defined inside the class then there is no need of this section.

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 7

This section is used only when you want to define member function outside the class.

This section contains definition of the member functions that are declared inside the class.

For example:

void Demo:: input ()

{

cout << “Enter Value of A:”;

cin >> a;

cout << “Enter Value of B:”;

cin >> b;

}

(4) Main Function Section:

o In this section you can create an object of the class and then using this object you can call

various functions defined inside the class as per your requirement.

For example:

Void main ()

{

Demo d1;

d1.input ();

d1.output ();

}

We can also compare the structure of C++ program with client server application. In client

server application client send request to the server and server sends response to the client.

In above C++ structure the class declaration section and member function definition section both

together works as a server and main () function section works as a client. Because in main () function

section we create an object of the class and then using that object we make a call to the function declared

in the class.

C++ Data Types

In C++, data types are declarations for variables. This determines the type and size of

data associated with variables. For example,

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 8

int age = 13;

Here, age is a variable of type int. Meaning, the variable can only store integers of

either 2 or 4 bytes.

C++ Fundamental Data Types

The table below shows the fundamental data types, their meaning, and their sizes (in

bytes):

Data Type Meaning Size (in Bytes)

Int Integer 2 or 4

float Floating-point 4

double Double Floating-point 8

char Character 1

wchar_t Wide Character 2

bool Boolean 1

void Empty 0

1. C++ int

 The int keyword is used to indicate integers.

 Its size is usually 4 bytes. Meaning, it can store values from -2147483648 to

214748647.

 For example,

int salary = 85000;

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 9

2. C++ float and double

 float and double are used to store floating-point numbers (decimals and

exponentials).

 The size of float is 4 bytes and the size of double is 8 bytes. Hence, double has two

times the precision of float. To learn more, visit C++ float and double.

 For example,

float area = 64.74;

double volume = 134.64534;

As mentioned above, these two data types are also used for exponentials. For

example,

double distance = 45E12 // 45E12 is equal to 45*10^12

3. C++ char

 Keyword char is used for characters.

 Its size is 1 byte.

 Characters in C++ are enclosed inside single quotes ' '.

4. C++ bool

 The bool data type has one of two possible values: true or false.

 Booleans are used in conditional statements and loops (which we will learn in

later chapters).

bool cond = false;

5. C++ void

 The void keyword indicates an absence of data. It means "nothing" or "no value".

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 10

Flow of Control

Control Structures

Control structures are portions of program code that contain statements within them and, depending

on the circumstances, execute these statements in a certain way. There are typically two kinds:

conditionals and loops.

2.1 Conditionals

In order for a program to change its behavior depending on the input, there must a way to test that input.

Conditionals allow the program to check the values of variables and to execute (or not execute) certain

statements. C++ has if and switch-case conditional structures.

2.1.1 Operators

Conditionals use two kinds of special operators: relational and logical. These are used to determine

whether some condition is true or false.

The relational operators are used to test a relation between two expressions:

Operator Meaning

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

They work the same as the arithmetic operators (e.g., a > b) but return a Boolean value of either true or

false, indicating whether the relation tested for holds. (An expression that returns this kind of value is

called a Boolean expression.) For example, if the variables x and y have been set to 6 and 2, respectively,

then x > y returns true. Similarly, x < 5 returns false.

The logical operators are often used to combine relational expressions into more complicated

Boolean expressions:

Operator Meaning

&& and

|| or

! not

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 11

The operators return true or false, according to the rules of logic:

A b a && b

True true True

True false False

False true False

False false False

A b a || b

True true True

True false True

False true True

False false False

The ! operator is a unary operator, taking only one argument and negating its value:

a !a

true False

false True

Examples using logical operators (assume x = 6 and y = 2):

!(x > 2) → false

→ true (x > y) && (y > 0)

(x < y) && (y > 0) → false

(x < y) || (y > 0) → true

Of course, Boolean variables can be used directly in these expressions, since they hold true and false

values. In fact, any kind of value can be used in a Boolean expression due to a quirk C++ has: false is

represented by a value of 0 and anything that is not 0 is true. So, “Hello, world!” is true, 2 is true, and any

int variable holding a non-zero value is true. This means !x returns false and x && y returns true!

2.1.2 if, if-else and else if

The if conditional has the form:

if(condition)

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 12

{

statement1

statement2

…

}

The condition is some expression whose value is being tested. If the condition resolves to a value of

true, then the statements are executed before the program continues on. Otherwise, the statements are

ignored. If there is only one statement, the curly braces may be omitted, giving the form:

if(condition)

statement

The if-else form is used to decide between two sequences of statements referred to as blocks:

if(condition)

{

statementA1

statementA2

…

}

else

{

statementB1

statementB2

…

}

If the condition is met, the block corresponding to the if is executed. Otherwise, the block

corresponding to the else is executed. Because the condition is either satisfied or not, one of the blocks

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 13

in an if-else must execute. If there is only one statement for any of the blocks, the curly braces for that

block may be omitted:

if(condition)

statementA1

else

statementB1

The else if is used to decide between two or more blocks based on multiple conditions:

if(condition1)

{

statementA1

statementA2

…

}

else if(condition2)

{

statementB1

statementB2

…

}

If condition1 is met, the block corresponding to the if is executed. If not, then only if condition2 is met
is the block corresponding to the else if executed. There may be more than one else if, each with its
own condition. Once a block whose condition was met is executed, any else ifs after it are ignored.

Therefore, in an if-else-if structure, either one or no block is executed.

An else may be added to the end of an if-else-if. If none of the previous conditions are met, the else block

is executed. In this structure, one of the blocks must execute, as in a normal if-else.

Here is an example using these control structures:

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 14

#include <iostream>
using namespace std;

int main()

{

int x = 6;

int y = 2;

if(x > y)

cout << “x is greater than y\n”;

else if(y > x)

cout << “y is greater than x\n”;

else

cout << “x and y are equal\n”;

return 0;

}

The output of this program is x is greater than y. If we replace lines 5 and 6 with

int x = 2;

int y = 6;

then the output is y is greater than x. If we replace the lines with

int x = 2;

int y = 2;

then the output is x and y are equal.

2.1.3 switch-case

The switch-case is another conditional structure that may or may not execute certain statements.

However, the switch-case has peculiar syntax and behavior:

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 15

switch(expression)

{

case constant1:

statementA1

statementA2

...

break;

case constant2:

statementB1

statementB2

...

break;

...

default:

statementZ1

statementZ2

...

}

The switch evaluates expression and, if expression is equal to constant1, then the statements beneath case

constant 1: are executed until a break is encountered. If expression is not equal to constant1, then it is

compared to constant2. If these are equal, then the statements beneath case constant 2: are executed until

a break is encountered. If not, then the same process repeats for each of the constants, in turn. If none of

the constants match, then the statements beneath default: are executed.

Due to the peculiar behavior of switch-cases, curly braces are not necessary for cases where there is more
than one statement (but they are necessary to enclose the entire switch-case). switch-cases generally have
if-else equivalents but can often be a cleaner way of expressing the same behavior.

Here is an example using switch-case:

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 16

#include <iostream>
using namespace std;

int main() {

int x = 6;

switch(x) {

case 1:

cout << “x is 1\n”;

break;

case 2:
case 3:

cout << "x is 2 or 3";

break;

default:
 cout << "x is not 1, 2, or 3";

}

return 0;
}

This program will print x is not 1, 2, or 3. If we replace line 5 with int x = 2; then the program will print

x is 2 or 3.

2.2 Loops

Conditionals execute certain statements if certain conditions are met; loops execute certain statements

while certain conditions are met. C++ has three kinds of loops: while, do-while, and for.

2.2.1 while and do-while

The while loop has a form similar to the if conditional:

while(condition)

{

statement1

statement2

…

}

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 17

As long as condition holds, the block of statements will be repeatedly executed. If there is only one

statement, the curly braces may be omitted. Here is an example:

#include <iostream>

using namespace std;

int main() {

int x = 0;

while(x < 10)

x = x + 1;
cout << “x is “ << x << “\n”;
return 0;
}

This program will print x is 10.

The do-while loop is a variation that guarantees the block of statements will be executed at least once:

do

{

statement1

statement2

…

}

while(condition);

The block of statements is executed and then, if the condition holds, the program returns to the top of

the block. Curly braces are always required. Also note the semicolon after the while condition.

2.2.2 for

The for loop works like the while loop but with some change in syntax:

for(initialization; condition; incrementation)

{

statement1

statement2

…

}

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 18

The for loop is designed to allow a counter variable that is initialized at the beginning of the loop and

incremented (or decremented) on each iteration of the loop. Curly braces may be omitted if there is

only one statement. Here is an example:

#include <iostream>
using namespace std;

int main() {

for(int x = 0; x < 10; x = x + 1)

cout << x << “\n”;

return 0;

}

This program will print out the values 0 through 9, each on its own line.

If the counter variable is already defined, there is no need to define a new one in the

initialization portion of the for loop. Therefore, it is valid to have the following:

#include <iostream>
using namespace std;

int main() {

int x = 0;

for(; x < 10; x = x + 1)

cout << x << “\n”;

return 0;

}

Note that the first semicolon inside the for loop's parentheses is still required.

A for loop can be expressed as a while loop and vice-versa. Recalling that a for loop has the form

for(initialization; condition; incrementation)

{

statement1

statement2

…

}

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 19

we can write an equivalent while loop as

while(condition)

{

statement1

statement2

…

incrementation

}

Using our example above,

#include <iostream>
using namespace std;

int main() {

for(int x = 0; x < 10; x = x + 1)

cout << x << “\n”;

return 0;

}

is converted to

#include <iostream>
using namespace std;

int main() {

int x = 0;

while(x < 10) {

cout << x << “\n”;

x = x + 1;
}

return 0;

}

The incrementation step can technically be anywhere inside the statement block, but it is good practice to

place it as the last step, particularly if the previous statements use the current value of the counter

variable.

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 20

2.3 Nested Control Structures

It is possible to place ifs inside of ifs and loops inside of loops by simply placing these structures inside the statement

blocks. This allows for more complicated program behavior.

Here is an example using nesting if conditionals:

#include <iostream>
using namespace std;

int main() {

int x = 6;

int y = 0;

if(x > y) {

cout << “x is greater than y\n”;

if(x == 6)

cout << “x is equal to 6\n”;

else

cout << “x is not equalt to 6\n”;

} else

cout << “x is not greater than y\n”;

return 0;
}

This program will print x is greater than y on one line and then x is equal to 6 on the next line.

Here is an example using nested loops:

#include <iostream>
using namespace std;

int main() {

for(int x = 0; x < 4; x = x + 1) {

for(int y = 0; y < 4; y = y + 1)

cout << y;

cout << “\n”;
}

return 0;

}

This program will print four lines of 0123.

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 21

C++ Scope resolution operator

The scope resolution operator (::) is used for several reasons. For example: If the global variable
name is same as local variable name, the scope resolution operator will be used to call the global
variable. It is also used to define a function outside the class and used to access the static variables of
class.

Here an example of scope resolution operator in C++ language,

#include <iostream>

using namespace std;

char a = 'm';

static int b = 50;

int main() {

 char a = 's';

 cout << "The static variable : "<< ::b;

 cout << "\nThe local variable : " << a;

 cout << "\nThe global variable : " << ::a;

 return 0;

}

Here is the output

The static variable : 50
The local variable : s
The global variable : m

C/C++ Tokens

A token is the smallest element of a program that is meaningful to the compiler. Tokens can be
classified as follows:

1. Keywords
2. Identifiers
3. Constants
4. Strings
5. Special Symbols
6. Operators
1. Keyword: Keywords are pre-defined or reserved words in a programming language.

Each keyword is meant to perform a specific function in a program. Since keywords are referred
names for a compiler, they can‟t be used as variable names because by doing so, we are trying to
assign a new meaning to the keyword which is not allowed. You cannot redefine keywords.

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 22

However, you can specify text to be substituted for keywords before compilation by using C/C++
preprocessor directives.C language supports 32 keywords which are given below:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

While in C++ there are 31 additional keywords other than C Keywords they are:

asm bool catch class
const_cast delete dynamic_cast explicit
export false friend inline
mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw
true try typeid typename
using virtual wchar_t

2. Identifiers: Identifiers are used as the general terminology for naming of variables, functions and
arrays. These are user defined names consisting of arbitrarily long sequence of letters and digits
with either a letter or the underscore(_) as a first character. Identifier names must differ in
spelling and case from any keywords. You cannot use keywords as identifiers; they are reserved
for special use. Once declared, you can use the identifier in later program statements to refer to
the associated value. A special kind of identifier, called a statement label, can be used in goto
statements.

 They must begin with a letter or underscore(_).

 They must consist of only letters, digits, or underscore. No other special character is allowed.

 It should not be a keyword.

 It must not contain white space.

 It should be up to 31 characters long as only first 31 characters are significant.

3. Constants: Constants are also like normal variables. But, only difference is, their values
can not be modified by the program once they are defined. Constants refer to fixed
values. They are also called as literals.
Constants may belong to any of the data type.

Syntax:
const data_type variable_name; (or) const data_type *variable_name;

Types of Constants:

1. Integer constants – Example: 0, 1, 1218, 12482
2. Real or Floating point constants – Example: 0.0, 1203.03, 30486.184
3. Octal & Hexadecimal constants – Example: octal: (013)8 = (11)10, Hexadecimal: (013)16 =

(19)10
4. Character constants -Example: „a‟, „A‟, „z‟
5. String constants -Example: “GeeksforGeeks”

BA COMPUTER APPLICATION C++

Developed By: Saroj Junghare Page 23

4. Operators: Operators are symbols that triggers an action when applied to C variables
and other objects. The data items on which operators act upon are called operands.
Depending on the number of operands that an operator can act upon, operators can be
classified as follows:

Unary Operators: Those operators that require only single operand to act upon are known as
unary operators.For Example increment and decrement operators
Binary Operators: Those operators that require two operands to act upon are called binary
operators. Binary operators are classified into :

1. Arithmetic operators
2. Relational Operators
3. Logical Operators
4. Assignment Operators
5. Conditional Operators
6. Bitwise Operators

Ternary Operators: These operators requires three operands to act upon. For Example
Conditional operator(?:).

