
BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 1 

 

UNIT II 

What is Function? 

Function is a group of logically related statements that is used to perform specific task.  

Function offers several advantages to the programmer:  

There is no need to write same block of statements again and again. Thus it will reduce the length of the 

program.  

Error handling is easy because we have to check only function body instead of same block of statement 

again and again. 

main () Function in C++ 

The main function is the starting point for the execution of the program. The execution of every c++ 

program starts from main function.  

The general syntax of main function in c++ is given below:  

int main () 

Here,  

main function returns the value of type integer while in C main function does not return any value.  

Hence main function in C++ returns value of type integer we must have to use return statement at the 

end of main function as shown below: 

int main()  

{  

Block of statements  

return 0;  

} 

If you don‟t specify the return type for main function then default return type is considered of type 

integer. 

Function Prototype/Function Declaration 

The declaration of function in the program is known as Function Prototype.  

The general syntax of function prototype is given below:  

Return-type Function_ Name (Argument_List); 

Example:  

int sum (int a, int b);  

Function Prototype provides following information to the compiler: 

(1) Name of the Function  



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 2 

 

(2) Return Type of the Function  

(3) Number of arguments and their Data Type  

Whenever compiler founds any function call statement, first it will check function prototype to 

ensure following things:  

(1) Weather the function that is called is declared or not.  

(2) Weather proper number of arguments is passed while calling the function or not.  

(3) Weather the data type of the arguments that are passed is corresponds to the arguments 

specified in the function prototype or not.  

(4) If the function returns any value then it is corresponds to the return type specified in the 

function prototype or not.  

If all the above mentioned criteria are satisfied then control of the program is transferred to the 

function definition otherwise compiler will generate error.  

While declaring the function you should keep following points in the mind: 
(1) You must specify data types for each argument separately.  

Example:  

int sum (int a, int b); // valid  

int sum (int a, b); // Not Valid  

(2) It is not compulsory to specify name of the arguments in the function declaration. 

Example:  

int sum (int, int); // valid  

(3)If function does not accept any argument then you can leave the parenthesis empty.  

Example:  

int sum (); // valid  

Types of  User-defined Functions in C++ 

In this tutorial, you will learn about different approaches you can take to solve a single 

problem using functions. For better understanding of arguments and return in 

functions, user-defined functions can be categorised as: 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 3 

 

 Function with no argument and no return value 

 Function with no argument but return value 

 Function with argument but no return value 

 Function with argument and return value 

 
Consider a situation in which you have to check prime number. This problem is 

solved below by making user-defined function in 4 different ways as mentioned 

above. 

# include <iostream> 

using namespace std; 

 

void prime(); 

 
int main() 

{ 

    // No argument is passed to prime() 

    prime(); 

    return 0; 

} 

 

 

// Return type of function is void because value is not returned. 
void prime() 

{ 

 

    int num, i, flag = 0; 

 

    cout << "Enter a positive integer enter to check: "; 

    cin >> num; 

 

    for(i = 2; i <= num/2; ++i) 

    { 

        if(num % i == 0) 

        { 

            flag = 1;  

            break; 

        } 

    } 

 

    if (flag == 1) 

    { 

https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_no_return
https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_yes_return
https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_no_return
https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_yes_return


BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 4 

 

        cout << num << " is not a prime number."; 

    } 

    else 

    { 

        cout << num << " is a prime number."; 

    } 
} 

In the above program, prime() is called from the main() with no arguments. 

prime() takes the positive number from the user and checks whether the number is a 

prime number or not. 

Since, return type of prime() is void, no value is returned from the function. 

Example 2: No arguments passed but a return value 

#include <iostream> 

using namespace std; 

 

int prime(); 

 
int main() 

{ 

    int num, i, flag = 0; 

 

    // No argument is passed to prime() 

    num = prime(); 

    for (i = 2; i <= num/2; ++i) 

    { 

        if (num%i == 0) 

        { 

            flag = 1; 

            break; 

        } 

    } 

 

    if (flag == 1) 

    { 

        cout<<num<<" is not a prime number."; 

    } 

    else 

    { 

        cout<<num<<" is a prime number."; 

    } 
    return 0; 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 5 

 

} 

 

// Return type of function is int 
int prime() 

{ 

    int n; 

 

    printf("Enter a positive integer to check: "); 

    cin >> n; 

 

    return n; 
} 

In the above program, prime() function is called from the main() with no arguments. 

prime() takes a positive integer from the user. Since, return type of the function is an 

int, it returns the inputted number from the user back to the calling main() function. 

Then, whether the number is prime or not is checked in the main() itself and printed 

onto the screen. 

Example 3: Arguments passed but no return value 

#include <iostream> 

using namespace std; 

 

void prime(int n); 

 
int main() 

{ 

    int num; 

    cout << "Enter a positive integer to check: "; 

    cin >> num; 

     

    // Argument num is passed to the function prime() 

    prime(num); 

    return 0; 

} 

 

// There is no return value to calling function. Hence, return type of function is void. */ 
void prime(int n) 

{ 

    int i, flag = 0; 

    for (i = 2; i <= n/2; ++i) 

    { 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 6 

 

        if (n%i == 0) 

        { 

            flag = 1; 

            break; 

        } 

    } 

 

    if (flag == 1) 

    { 

        cout << n << " is not a prime number."; 

    } 

    else { 

        cout << n << " is a prime number."; 

    } 
} 

In the above program, positive number is first asked from the user which is stored in 

the variable num. 

Then, num is passed to the prime() function where, whether the number is prime or not 

is checked and printed. 

Since, the return type of prime() is a void, no value is returned from the function. 

Example 4: Arguments passed and a return value. 

#include <iostream> 

using namespace std; 

 

int prime(int n); 

 
int main() 

{ 

    int num, flag = 0; 

    cout << "Enter positive integer to check: "; 

    cin >> num; 

 

    // Argument num is passed to check() function 

    flag = prime(num); 

 

    if(flag == 1) 

        cout << num << " is not a prime number."; 

    else 

        cout<< num << " is a prime number."; 

    return 0; 

} 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 7 

 

 

/* This function returns integer value.  */ 
int prime(int n) 

{ 

    int i; 

    for(i = 2; i <= n/2; ++i) 

    { 

        if(n % i == 0) 

            return 1; 

    } 

 

    return 0; 
} 

In the above program, a positive integer is asked from the user and stored in the 

variable num. 

Then, num is passed to the function prime() where, whether the number is prime or not 

is checked. 

Since, the return type of prime() is an int, 1 or 0 is returned to the main() calling 

function. If the number is a prime number, 1 is returned. If not, 0 is returned. 

Back in the main() function, the returned 1 or 0 is stored in the variable flag, and the 

corresponding text is printed onto the screen. 
 

C++ Function Overloading 

Two or more functions having same name but different argument(s) are known as 

overloaded functions. In this article, you will learn about function overloading with 

examples. 

Function refers to a segment that groups code to perform a specific task. 

In C++ programming, two functions can have same name if number and/or type of 

arguments passed are different. 

These functions having different number or type (or both) of parameters are known 

as overloaded functions. For example: 

https://www.programiz.com/cpp-programming/function


BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 8 

 

int test() { } 

int test(int a) { } 

float test(double a) { } 
int test(int a, double b) { } 

Here, all 4 functions are overloaded functions because argument(s) passed to these 

functions are different. 

Notice that, the return type of all these 4 functions are not same. Overloaded 

functions may or may not have different return type but it should have different 

argument(s). 

// Error code 

int test(int a) { } 
double test(int b){ } 

The number and type of arguments passed to these two functions are same even 

though the return type is different. Hence, the compiler will throw error. 

Example 1: Function Overloading 

#include <iostream> 

using namespace std; 

 

void display(int); 

void display(float); 

void display(int, float); 

 

int main() { 

 

    int a = 5; 

    float b = 5.5; 

 

    display(a); 

    display(b); 

    display(a, b); 

 

    return 0; 

} 

 

void display(int var) { 

    cout << "Integer number: " << var << endl; 

} 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 9 

 

 

void display(float var) { 

    cout << "Float number: " << var << endl; 

} 

 

void display(int var1, float var2) { 

    cout << "Integer number: " << var1; 

    cout << " and float number:" << var2; 
} 

Output 

Integer number: 5 

Float number: 5.5 

Integer number: 5 and float number: 5.5 

Here, the display() function is called three times with different type or number of 

arguments. 

The return type of all these functions are same but it's not necessary. 

Example 2: Function Overloading 

// Program to compute absolute value 

// Works both for integer and float 

 

#include <iostream> 

using namespace std; 

 

int absolute(int); 

float absolute(float); 

 

int main() { 

    int a = -5; 

    float b = 5.5; 

     

    cout << "Absolute value of " << a << " = " << absolute(a) << endl; 

    cout << "Absolute value of " << b << " = " << absolute(b); 

    return 0; 

} 

 

int absolute(int var) { 

     if (var < 0) 

         var = -var; 

    return var; 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 10 

 

} 

 

float absolute(float var){ 

    if (var < 0.0) 

        var = -var; 

    return var; 
} 

Output 

Absolute value of -5 = 5 

Absolute value of 5.5 = 5.5 

In the above example, two functions absolute() are overloaded. 

Both functions take single argument. However, one function takes integer as an 

argument and other takes float as an argument. 

When absolute() function is called with integer as an argument, this function is called: 

int absolute(int var) { 

     if (var < 0) 

         var = -var; 

    return var; 

} 

When absolute() function is called with float as an argument, this function is called: 

float absolute(float var){ 

    if (var < 0.0) 

        var = -var; 

    return var; 
} 

Inline Function 

One disadvantage of using normal function is that it will decrease the execution speed of the 

program. Because every time a function is called the control of the program is transferred to the 

function body, after executing all the statements inside function the control of the program is 

transferred immediately after the statement from which the function is called. Thus it will take 

lots of extra time when function is small and it needs to be called repeatedly.  

This problem can solved using the concept of inline function. In order to make a normal 

function inline you just have to precede the function definition with inline keyword. The inline 

function must be defined before it is called in the program. It means at the starting of the 

program.  



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 11 

 

When the function is defined as inline the function call is replaced by function definition at the 

time of function call. So there it will increase the execution speed of the program. 

The general form of inline function is given below:  

inline Return-type Function_ Name (Argument_List)  

{  

Block of statement  

} 

Advantage of inline function is that it will increase the speed of program execution. You should 

declare the function as inline only when the function contains two or three statements.  

Disadvantage of inline function is that each time a function is called it will replace by function 

definition so extra memory space is occupied at the time of executing the program.  

Inline functions provide following advantages: 

1) Function call overhead doesn‟t occur. 

2) It also saves the overhead of push/pop variables on the stack when function is called. 

3) It also saves overhead of a return call from a function. 

4) When you inline a function, you may enable compiler to perform context specific 

optimization on the body of function. Such optimizations are not possible for normal function 

calls. Other optimizations can be obtained by considering the flows of calling context and the 

called context. 

5) Inline function may be useful (if it is small) for embedded systems because inline can yield less 

code than the function call preamble and return. 

Inline function disadvantages: 

1) The added variables from the inlined function consumes additional registers, After in-lining 

function if variables number which are going to use register increases than they may create 

overhead on register variable resource utilization. This means that when inline function body is 

substituted at the point of function call, total number of variables used by the function also gets 

inserted. So the number of register going to be used for the variables will also get increased. So if 

after function inlining variable numbers increase drastically then it would surely cause an 

overhead on register utilization. 

2) If you use too many inline functions then the size of the binary executable file will be large, 

because of the duplication of same code. 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 12 

 

3) Too much inlining can also reduce your instruction cache hit rate, thus reducing the speed of 
instruction fetch from that of cache memory to that of primary memory. 

4) Inline function may increase compile time overhead if someone changes the code inside the 
inline function then all the calling location has to be recompiled because compiler would require 
to replace all the code once again to reflect the changes, otherwise it will continue with old 
functionality. 

5) Inline functions may not be useful for many embedded systems. Because in embedded 
systems code size is more important than speed. 

6) Inline functions might cause thrashing because inlining might increase size of the binary 
executable file. Thrashing in memory causes performance of computer to degrade. 

The following program demonstrates the use of use of inline function. 

#include <iostream>  

using namespace std;  

inline int cube(int s)  

{  

 return s*s*s;  

}  

int main()  

{  

 cout << "The cube of 3 is: " << cube(3) << "\n";  

 return 0;  

} //Output: The cube of 3 is: 27 

Inline function and classes: 
It is also possible to define the inline function inside the class. In fact, all the functions defined 
inside the class are implicitly inline. Thus, all the restrictions of inline functions are also applied 
here. If you need to explicitly declare inline function in the class then just declare the function 
inside the class and define it outside the class using inline keyword. 
For example: 

class S  

{  

public:  



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 13 

 

 inline int square(int s) // redundant use of inline  

 {  

  // this function is automatically inline  

  // function body  

 }  

}; 

#include <iostream>  

using namespace std;  

class operation  

{  

 int a,b,add,sub,mul;  

 float div;  

public:  

 void get();  

 void sum();  

 void difference();  

 void product();  

 void division();  

};  

inline void operation :: get()  

{  

 cout << "Enter first value:";  

 cin >> a;  

 cout << "Enter second value:";  

 cin >> b;  



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 14 

 

}  

 

inline void operation :: sum()  

{  

 add = a+b;  

 cout << "Addition of two numbers: " << a+b << "\n";  

}  

 

inline void operation :: difference()  

{  

 sub = a-b;  

 cout << "Difference of two numbers: " << a-b << "\n";  

}  

 

inline void operation :: product()  

{  

 mul = a*b;  

 cout << "Product of two numbers: " << a*b << "\n";  

}  

 

inline void operation ::division()  

{  

 div=a/b;  

 cout<<"Division of two numbers: "<<a/b<<"\n" ;  

}  



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 15 

 

 

int main()  

{  

 cout << "Program using inline function\n";  

 operation s;  

 s.get();  

 s.sum();  

 s.difference();  

 s.product();  

 s.division();  

 return 0;  

} 

Output:  

Enter first value: 45 

Enter second value: 15 

Addition of two numbers: 60 

Difference of two numbers: 30 

Product of two numbers: 675 

Division of two numbers: 3  

Library Functions In C++ 

Library functions which are also called as “built-in” functions are the functions that are already 
available and implemented in C++. 

We can directly call these functions in our program as per our requirements. Library functions in 
C++ are declared and defined in special files called “Header Files” which we can reference in our 
C++ programs using the “include” directive. 

Headers Description 

iostream This header contains the prototype for standard input and output 
functions used in C++ like cin, cout, etc. 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 16 

 

Headers Description 

cmath This is the header containing various math library functions. 

iomanip This header contains stream manipulator functions that allow us to format 
the stream of data. 

cstdlib The header cstdlib contains various functions related to conversion 
between text and numbers, memory allocation, random numbers, and 
other utility functions. 

ctime ctime contains function prototypes related to date and time manipulations 
in C++. 

cctype This header includes function prototypes that test the type of characters 
(digit, punctuation, etc.). It also has prototypes that are used to convert 
from uppercase to lowercase and another way around. 

cstring cstring header includes function prototypes for C-style string-processing 
functions. 

cstdio This header contains function prototypes for the C-style standard 
input/output library functions which we included initially in stdio.h 

fstream Function prototypes for functions that perform input/output from/to 
files on disk are included in fstream header. 

climits climits header has the integral size limits of the system. 

cassert cassert header contains macros and variables for adding diagnostics that 
help us in program debugging. 

cfloat This header file contains the size limits for floating-point numbers on the 
system. 

string The header string defines the class string of the C++ Standard Library. 

list, vector, stack, 
queue, deque, map,  set, 
bitset 

All these headers are used for Standard Template Library (STL) 
implementation. Each of these headers contains the respective class 
definition and function prototypes. 

typeinfo This header contains various classes for Runtime Type Identification 
(RTTI). 

exception,  stdexcept All the classes and functions used for exception handling in C++ are 
included in these two headers. 

memory This header is used by the C++ standard library to allocate memory. 

sstream Functions that read input from strings in memory and output to strings in 
memory require functions prototypes from sstream header to implement 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 17 

 

Headers Description 

the functionality. 

functional Used by C++ standard library algorithms. 

iterator Function prototypes and classes in this header are used by Standard 
Template Library to traverse through or iterate through the data inside 
containers. 

algorithm Methods that act on STL container data are included in this header 
algorithm 

locale To process data in the original natural form for different languages or 
locales (currencies, character presentation, etc.), the locale header 
definitions are used. 

limits This header defines the data type limit for Numbers on each platform. 

utility This header contains utility functions and classes used by the Standard 
C++ library. 

We have already used most of these headers throughout our tutorial so far. Notable is <iostream>, 
<string>, <ctime> headers that we have used from time to time. 

Function Description 

sqrt(x) Accepts any non-negative numeric parameter x and returns the square 
root of this number x 

pow(base,exponent) Raises the „base‟ value to the power specified by the exponent. Returns 
base^exponent. 

exp(x) Takes any number (positive, negative or zero) as a parameter and returns 
exponential (Euler‟s number) e raised to the given parameter 

fabs(x) Returns absolute value of an argument. 

log(x) Returns the natural logarithm (to the base e) of value x 

log 10(x) Return the logarithm (to the base 10) of value x 

sin(x) Returns sine of the angle x (in radians) 

cos(x) Returns cosine of angle x (in radians) 

tan(x) Returns tangent of angle x (in radians) 

asin(x) Returns inverse sine (in radians) of number x 

acos(x) Returns inverse cosine (in radians) of number x 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 18 

 

Function Description 

atan(x) Returns inverse tangent (in radians) of number x 

Function Description 

toupper(ch) Takes in character „ch‟ as an argument and returns the uppercase 
equivalent of ch if it's present otherwise returns ch. 

tolower(ch) Takes in character „ch‟ as an argument and returns the lowercase 
equivalent of ch if it's present otherwise returns ch. 

isalpha(ch) Returns non-zero if ch is alphabet otherwise 0. 

isalnum(ch) Returns non-zero if ch is alphanumeric (alphabet or number) otherwise 
0. 

isupper(ch) Returns non-zero value if ch is uppercase otherwise 0. 

isdigit(ch) Returns non-zero value if ch is a number otherwise 0. 

islower() Returns non-zero value if ch is lowercase otherwise 0. 

Function Description 

abs(x) Returns absolute value of an integral argument x 

atof(const char* str) Converts string to double; returns double 

atoi(const char* str) Converts string to int; returns an int 

atol(const char* str) Converts string to long int; returns a long int 

atoll(const char* str) Converts string to long long int; returns a long long int 

strtod Converts string to double 

strtol Converts string to long int 

strtoul Converts string to unsigned long integer 

strtof Converts string to float 

strtold Converts string to long double 

strtoull Converts string to unsigned long long integer 

strtoll Converts string to long long integer 

srand(int seed) This is a pseudo-random generator that is initialized to argument „seed‟ 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 19 

 

Function Description 

qsort Sorts elements of the array in ascending order(internally uses quick sort 
method) 

abort Aborts the process resulting in abnormal program termination 

atexit Has function passed as an argument which is executed resulting in 
normal program termination. 

malloc(size_t size) Used to allocate memory specified by size and return a pointer to it 

calloc ( size_t num, 
size_t size) 

Allocates memory of (num*size) bytes with all bits initialized to zero 

free(void* ptr) Deallocates memory block allocated by malloc, calloc or realloc function 
call. 

realloc ( void* ptr, size_t 
size ) 

Resizes the memory block pointed to by ptr that was initially allocated 
using malloc or calloc function call. 

quick_exit Normal termination of the process after returning control to the host 
environment. 

system Invokes command processor to execute system command passed as an 
argument 

getenv Retrieves the value of environment string passed as an argument to the 
function 

wctomb Convert the wide character to a multibyte sequence 

wcstombs Convert wide character string to multibyte string 

 

C++ Classes and Objects 

C++ is a multi-paradigm programming language. Meaning, it supports different 

programming styles. 

One of the popular ways to solve a programming problem is by creating objects, 

known as object-oriented style of programming. 

C++ supports object-oriented (OO) style of programming which allows you to divide 

complex problems into smaller sets by creating objects. 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 20 

 

Object is simply a collection of data and functions that act on those data. 

C++ Class 

Before you create an object in C++, you need to define a class. 

A class is a blueprint for the object. 

We can think of class as a sketch (prototype) of a house. It contains all the details 

about the floors, doors, windows etc. Based on these descriptions we build the house. 

House is the object. 

As, many houses can be made from the same description, we can create many objects 

from a class. 

How to define a class in C++? 

A class is defined in C++ using keyword class followed by the name of class. 

The body of class is defined inside the curly brackets and terminated by a semicolon 

at the end. 

class className 

   { 

   // some data 

   // some functions 

   }; 

Example: Class in C++ 

class Test 

{ 

    private: 

        int data1; 

        float data2;   



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 21 

 

 

    public:   

        void function1() 

        {   data1 = 2;  }  

 

        float function2() 

        {  

            data2 = 3.5; 

            return data2; 

        } 

   }; 

Here, we defined a class named Test 
This class has two data members: data1 and data2 and two member functions: function1() 
and function2(). 

Keywords: private and public 

You may have noticed two keywords: private and public in the above example. 

The private keyword makes data and functions private. Private data and functions can 

be accessed only from inside the same class. 

The public keyword makes data and functions public. Public data and functions can 

be accessed out of the class. 

Here, data1 and data2 are private members where as function1() and function2() are public 

members. 

If you try to access private data from outside of the class, compiler throws error. This 

feature in OOP is known as data hiding. 

C++ Objects 

When class is defined, only the specification for the object is defined; no memory or 

storage is allocated. 

To use the data and access functions defined in the class, you need to create objects. 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 22 

 

Syntax to Define Object in C++ 

className objectVariableName; 

You can create objects of Test class (defined in above example) as follows: 
class Test 

{ 

    private: 

        int data1; 

        float data2;   

 

    public:   
        void function1() 

        {   data1 = 2;  }  

 
        float function2() 

        {  

            data2 = 3.5; 

            return data2; 

        } 

   }; 

 
int main() 

{ 

    Test o1, o2; 
} 

Here, two objects o1 and o2 of Test class are created. 

In the above class Test, data1 and data2 are data members and function1() and function2() 

are member functions. 

How to access data member and member function in C++? 

You can access the data members and member functions by using a . (dot) operator. 

For example, 

o2.function1(); 

This will call the function1() function inside the Test class for objects o2. 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 23 

 

Similarly, the data member can be accessed as: 

o1.data2 = 5.5; 

It is important to note that, the private members can be accessed only from inside the 

class. 

So, you can use o2.function1(); from any function or class in the above example. 

However, the code o1.data2 = 5.5; should always be inside the class Test. 

Example: Object and Class in C++ Programming 

// Program to illustrate the working of objects and class in C++ Programming 

#include <iostream> 

using namespace std; 

 
class Test 

{ 

    private: 

        int data1; 

        float data2; 

 

    public: 

        
       void insertIntegerData(int d) 

       { 

          data1 = d; 

          cout << "Number: " << data1; 

        } 

 
       float insertFloatData() 

       { 

           cout << "\nEnter data: "; 

           cin >> data2; 

           return data2; 

        } 

}; 

 
 int main() 

 { 

      Test o1, o2; 

      float secondDataOfObject2; 

 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 24 

 

      o1.insertIntegerData(12); 

      secondDataOfObject2 = o2.insertFloatData(); 

 

      cout << "You entered " << secondDataOfObject2; 

      return 0; 
 } 

Output 

Number: 12 

Enter data: 23.3 

You entered 23.3 

In this program, two data members data1 and data2 and two member functions 

insertIntegerData() and insertFloatData() are defined under Test class. 

Two objects o1 and o2 of the same class are declared. 

The insertIntegerData() function is called for the o1 object using: 

o1.insertIntegerData(12); 

This sets the value of data1 for object o1 to 12. 

Then, the insertFloatData() function for object o2 is called and the return value from the 

function is stored in variable secondDataOfObject2 using: 

secondDataOfObject2 = o2.insertFloatData(); 

In this program, data2 of o1 and data1 of o2 are not used and contains garbage value. 

 

Friend Function 

A friend function is a function that is not a member of a class but it can access private and protected 

member of the class in which it is declared as friend.  

Since friend function is not a member of class it can not be accessed using object of the class. It is called 

in the same way as normal external function is called.  

It works same as your real life friend. Your friend is not a member of your family but still he knows about 

you and your family.  

Sometimes it is required that private member of the class can be accessed outside the class at that time we 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 25 

 

have to use friend function.  

A function can be declared as a friend by preceding function declaration with friend keyword as shown 

below:  

friend Return_Type Function_Name (Argument List); 

Example: 

#include<iostream.h>  

class Circle  

{  

int r;  

public:  

void input()  

{  

cout<<"Enter Radius:";  

cin>>r;  

}  

friend float area(Circle C);  

};  

float area(Circle C)  

{  

return (3.14*C.r*C.r);  

}  

int main()  

{  

Circle C1;  

C1.input();  

cout<<"Area of Circle is:"<<area(C1);  

return 0;  

} 

Friend function having following characteristics:  

(1) A friend function can be declared inside class but it is not member of the class.  



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 26 

 

(2) It can be declared either public or private without affecting its meaning.  

(3) A friend function is not a member of class so it is not called using object of the class. It is called like 

normal external function.  

(4) A friend function accepts object as an argument to access private or public member of the class.  

(5) A friend function can be declared as friend in any number of classes. 

 

Access Modifiers in C++ 
Access modifiers are used to implement an important feature of Object-Oriented Programming 

known as Data Hiding. Consider a real-life example: 

The Indian secret informatic system having 10 senior members have some top secret regarding 

national security. So we can think that 10 people as class data members or member functions 

who can directly access secret information from each other but anyone can‟t access this 

information other than these 10 members i.e. outside people can‟t access information directly 

without having any privileges. This is what data hiding is. 

Access Modifiers or Access Specifiers in a class are used to set the accessibility of the class 

members. That is, it sets some restrictions on the class members not to get directly accessed by 

the outside functions. 

There are 3 types of access modifiers available in C++:  

1. Public 
2. Private 
3. Protected 

Note: If we do not specify any access modifiers for the members inside the class then by default 
the access modifier for the members will be Private. 
Let us now look at each one these access modifiers in details: 

1. Public: All the class members declared under public will be available to everyone. The 
data members and member functions declared public can be accessed by other classes 
too. The public members of a class can be accessed from anywhere in the program 
using the direct member access operator (.) with the object of that class. 
Example: 

// C++ program to demonstrate public  

// access modifier  

 

#include<iostream>  

using namespace std;  

 

// class definition  

class Circle  

https://practice.geeksforgeeks.org/problems/what-is-data-hiding
https://www.geeksforgeeks.org/c-classes-and-objects/


BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 27 

 

{  

 public:  

  double radius;  

   

  double compute_area()  

  {  

   return 3.14*radius*radius;  

  }  

  

};  

 

// main function  

int main()  

{  

 Circle obj;  

  

 // accessing public datamember outside class  

 obj.radius = 5.5;  

  

 cout << "Radius is: " << obj.radius << "\n";  

 cout << "Area is: " << obj.compute_area();  

 return 0;  

} 
Output: 
Radius is: 5.5 

Area is: 94.985 

In the above program the data member radius is public so we are allowed to access it 
outside the class.  
 
2. Private: The class members declared as private can be accessed only by the functions 

inside the class. They are not allowed to be accessed directly by any object or function 
outside the class. Only the member functions or the friend functions are allowed to 

https://www.geeksforgeeks.org/friend-class-function-cpp/


BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 28 

 

access the private data members of a class. 
Example: 
 
// C++ program to demonstrate private  
// access modifier  
 
#include<iostream>  
using namespace std;  
 
class Circle  
{  
 // private data member  
 private:  
  double radius;  
  
 // public member function   
 public:   
  double compute_area()  
  { // member function can access private  
   // data member radius  
   return 3.14*radius*radius;  
  }  
  
};  
 
// main function  
int main()  
{  
 // creating object of the class  
 Circle obj;  
  
 // trying to access private data member  
 // directly outside the class  
 obj.radius = 1.5;  
  
 cout << "Area is:" << obj.compute_area();  
 return 0;  
} 

The output of above program will be a compile time error because we are not allowed to access 
the private data members of a class directly outside the class. 
Output: 
 In function 'int main()': 

11:16: error: 'double Circle::radius' is private 

         double radius; 

                ^ 

31:9: error: within this context 

     obj.radius = 1.5; 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 29 

 

         ^ 

However, we can access the private data members of a class indirectly using the public member 
functions of the class. Below program explains how to do this: 

// C++ program to demonstrate private  
// access modifier  
 
#include<iostream>  
using namespace std;  
 
class Circle  
{  
 // private data member  
 private:  
  double radius;  
  
 // public member function   
 public:   
  void compute_area(double r)  
  { // member function can access private  
   // data member radius  
   radius = r;  
    
   double area = 3.14*radius*radius;  
    
   cout << "Radius is: " << radius << endl;  
   cout << "Area is: " << area;  
  }  
  
};  
 
// main function  
int main()  
{  
 // creating object of the class  
 Circle obj;  
  
 // trying to access private data member  
 // directly outside the class  
 obj.compute_area(1.5);  
  
  
 return 0;  
} 

Output: 
Radius is: 1.5 

Area is: 7.065 

 



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 30 

 

3. Protected: Protected access modifier is similar to that of private access modifiers, the 
difference is that the class member declared as Protected are inaccessible outside the 
class but they can be accessed by any subclass(derived class) of that class. 
Example: 
// C++ program to demonstrate  
// protected access modifier  
#include <bits/stdc++.h>  
using namespace std;  
 
// base class  
class Parent  
{  
 // protected data members  
 protected:  
 int id_protected;  
  
};  
 
// sub class or derived class  
class Child : public Parent  
{  
  
  
 public:  
 void setId(int id)  
 {  
   
  // Child class is able to access the inherited  
  // protected data members of base class  
   
  id_protected = id;  
   
 }  
  
 void displayId()  
 {  
  cout << "id_protected is: " << id_protected << endl;  
 }  
};  
 
// main function  
int main() {  
  
 Child obj1;  
  
 // member function of the derived class can  
 // access the protected data members of the base class  
  
 obj1.setId(81);  
 obj1.displayId();  



BA COMPUTER APPLICATION C++ 

Developed By: Saroj Junghare Page 31 

 

 return 0;  
} 

Output: 
id_protected is: 81 

 
 

 
 


